pKa's of Inorganic and Oxo-Acids

Substrate	pKa H ₂ O (DMSO)	Substrate pKa	H ₂ O(DMSO)	Substrate	pKa H ₂ O	(DMSO)	Substrate	pKa H ₂ O (DMSO)
INORGANIC ACIDS		CARBOXYLIC	ACIDS	ALCOHOLS			PROTONA	ATED SPECIES
H ₂ O H ₃ O ⁺	14.0 (32) 0.0	x OH		HOH MeOH	14.0 15.5	(31.2) (27.9)	Ph OH	-12.4
H ₂ S HBr	7.00 -9.00 (0.9)	$X = CH_3$ CH_2NO_2	4.76 (12.3) 1.68	i-PrOH t-BuOH	16.5 17.0	(29.3) (29.4)	Ph OH	-7.8
HCI	-8.0 (1.8)	CH ₂ F CH ₂ Cl CH ₂ Br	2.66 2.86 2.86	c-hex₃COH CF₃CH₂OH	24.0 12.5	(23.5)	Ph CH ₃	-6.2
HF HOCI	3.17 (15) 7.5	CH ₂ I CHCl ₂	3.12 1.29	(CF ₃) ₂ CHOH C ₆ H ₅ OH		(18.2) (18.0)	H I O [†] Me	-6.5
HCIO₄ HCN	-10 9.4 (12.9)	CCI ₃ CF ₃ H	0.65 -0.25 3.77	m-O ₂ NC ₆ H ₄ ; p-O ₂ NC ₆ H ₄ ;	OH 8.4	(10.8)	H H Me Me	-3.8
HN ₃ HSCN	4.72 (7.9) 4.00	HO C ₆ H ₅	3.6, 10.3 4.2 (11.1)	<i>p</i> -OMeC ₆ H ₄ C 2-napthol	DH 10.2	(19.1) (17.1)	С Н Н	-2.05
H ₂ SO ₃	1.9, 7.21	o-O ₂ NC ₆ H ₄ m-O ₂ NC ₆ H ₄	2.17 2.45 3.44	OXIMES & HY	'DROXAMIC	ACIDS	Me ^Ź H ⁺OH	-2.2
H ₂ SO ₄ H ₃ PO ₄	-3.0, 1.99 2.12, 7.21,	p-O ₂ NC ₆ H ₄ o-CIC ₆ H ₄ m-CIC ₆ H ₄	2.94 3.83	Ph	11.3	(20.1)	Me S Me	-1.8
HNO ₃	12.32 -1.3 3.29	p-CIC ₆ H ₄	3.99	Ph N OH	8.88 (NH)	(13.7)	N+-OH Me	0.79 (+1.63)
HNO ₂ H ₂ CrO ₄	-0.98, 6.50	o-(CH ₃) ₃ N+C ₆ H p-(CH ₃) ₃ N+C ₆ H	1 ₄ 3.43	Ph N OH		(18.5)	∰I Me—N—OH I Me	(+5.55)
CH ₃ SO ₃ H CF ₃ SO ₃ H	-2.6 (1.6) -14 (0.3)	p-OMeC ₆ H₄	4.47		ROXIDES		SULFINIC &	SULFONIC ACIDS
NH₄CI	9.24 9.23	R= H	4.25	MeOOH	11.5		Me	-2.6
B(OH)₃ HOOH	9.23 11.6	<i>trans</i> -CO ₂ H <i>cis</i> -CO ₂ H	3.02, 4.38 1.92, 6.23	CH₃CO₃H	8.2	l	O II S OH	2.1

^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

The pka of water and H_3O^+ have been experimentally determined to be 14.0 and 0.0, respectively. Earlier values of 15.7 and -1.74, respectively are erroneous numbers proposed by scientists who made some errors in the calculated "rational" values. See: 1) *Helv. Chim. Acta* **2014**, *97*, 1. and 2) *J. Chem. Educ.* **2017**, *94*, 690.

Substrate pk	(a H ₂ O (DMSC) Substrate pKa H ₂ O (DMSO)	Substrate pKa H ₂ O (DMSO)	Substrate pKa H ₂ O (DMSO)
PROTONATE	NITROGEN	AMINES	IMIDES	HYDROXAMIC ACID & AMIDINES
N+H ₄ EtN+H ₃	9.2 (10.5) 10.6	HN ₃ 4.7 (7.9) NH ₃ 38 (41) <i>i</i> -Pr ₂ NH (36 THF))	NH 8.30 NH (14.7)	8.88 (13.7) Ph (NH)
<i>i</i> -Pr ₂ N+H ₂ Et ₃ N+H PhN+H ₃	11.05 10.75 (9.00) 4.6 (3.6)	TMS ₂ NH 26(THF) (30) PhNH ₂ (30.6)	$\frac{Ac_2NH}{Ac_2NH}$ (17.9)	$_{\rm R}$ $_{\rm NH_2}^{\rm NSO_2Ph}$ R= Me (17.3) Ph (15.0)
PhN+(Me) ₂ H Ph ₂ N+H ₂ 2-napthal-N+H ₃	5.20 (2.50) 0.78 4.16	Ph ₂ NH (25.0) Me Me Me NCNH ₂ (16.9) NH (37)		HETEROCYCLES H (20.95) H (16.4)
$H_2NN^+H_3$ HON^+H_3 Quinuclidine	8.12 5.96 11.0 (9.80)	M ₂ N (26.5) AMIDES & CARBAMATES	GUANIDINIUM, HYRDAZONES,- IDES, & -INES N*H ₂ (13.6) NNH ₂ (21.6)	H (11.9) NH (23.0)
Morpholine ON-Me morpholine	N⁺H ₂ 8.36	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me ₂ N NMe ₂ Ph Me (18.9) Ph NHNH ₂	X = 0 (24) $X = S (13.3)$ $X = S (13.6)$ $X = S (13.6)$
O ₂ N +NH ₃	7.38 -9.3	(urea) NH ₂ (26.9) OEt (24.8)	$\begin{array}{ccc} \text{PhSO}_2\text{NHNH}_2 & (17.2) \\ \text{PhNHNHPh} & (26.1) \\ \hline \end{array}$	X= O (14.8) NH (13.9)
DABCO NO2	2.97, 8.82 (2.97, 8.93)	Ph 12 (20.5) N Ph (21.6) O NH O Bn	DBU (12) (estimate)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
H ₃ N*		$ \begin{array}{c c} & \text{NH} & \text{n= 1 (24.1)} \\ & \text{NH} & \text{n= 2 (26.4)} & \text{O} \end{array} $	DMAP Me ₂ N— NH 9.2 HN NH 6.95	H (29.4) H (16.5) Me N+ Me j-Pr
Proton Sponge	-9.0, 12.0 (, 7.50)	0 (15) 0 0 (12.1)	R R= H (PPTS) 5.21 (3.4) + t-Bu 4.95 (0.90) Me 6.75 (4.46)	$ \begin{array}{c ccccc} & & & & & & & & \\ & & & & & & & \\ N_{N+}^{+} & (18.4) & & & & & \\ & & & & & & \\ N_{P}^{+} & & & & & \\ \end{array} $
PhCN+H	-10	·	R Cl, H 0.72	i i i i i i i i i i i i i i i i i i i

^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

pKa's of CH bonds in Hydrocarbons and Carbonyl Compounds

Substrate	pKa H ₂ O (DMSO)	Substrate pKa	H ₂ O (DMSO)	Substrate	pKa H ₂ O (DMSO)	Substrate pk	(a H ₂ O (DMSO)
HYDR	OCARBONS	ESTE	RS	К	ETONES		
(Me) ₃ CH	53	 	24.5 (30.3)			Me	
$(\mathrm{Me})_2\mathrm{CH}_2$	51	t-BuO O Me		Me X= H	(26.5)	×	
CH ₂ =CH ₂	50	t-BuO Ph	(23.6)	Ph	(19.8)	X= H	(24.7) (25.7)
CH ₄	48 (56)	<u> </u>	(20.0)	SPh COCH ₃	(18.7) 9 (13.3)	OMe NMe ₂	(27.5)
\triangle	46	EtO N ⁺ Me ₃	(20.0)	ູSO₂Phັ ດ	(12.5)	Br CN	(23.8) (22.0)
CH ₂ =CHCH ₃	43 (44)	EtO	11 (14.2)	Et OEt	19-20 (27.1)	9	,
PhH	43		13 (15.7)	l j	(28.3)	\bigcap_{n}	
PhCH ₃	41 (43)	MeO OMe	10 (10.7)	i-Pr o i-Pr Ⅱ	(27.7)		
Ph ₂ CH ₂	33.5 (32.2)	l Ľ "s	(20.9)	t-Bu O Me		n= 4	(25.1) (25.8)
Ph ₃ CH	31.5 (30.6)	MeO S.	(20.0)	Ph	(26.3)	5 6	(26.4)
HCCH	24		[30.2 (THF)]			7 8	(27.7) (27.4)
PhCCH	23 (28.8)	LiO		Ph ^	(24.7)	4	(=//
$XC_6H_4CH_3$ X= p-CN	(30.8)	AMID	ES	X= H CH ₃	(24.7)		(28.1)
$p-NO_2$	(20.4)	O .Ph	(26.6)	Ph COCH ₃	(17.7)		
<i>p</i> -COPh	(26.9)	Me ₂ N O	(05.0)	COCH ₃	(13.3)		(29.0)
	(, Ле	Me ₂ N SPh	(25.9)	CN F	(10.2) (21.6)		
	(26.1)	N⁺Me₃	(24.9)	OMe	(22.85)		(25.5)
Me Me		Et ₂ N° O		OPh SPh	(21.1) (16.9)	V V	
	20 (20.1)	N CN	(17.2)	SePh	(18.6)	٨ ۔	
^	(,)		(18.2)	NPh ₂ N+Me ₃	(20.3) (14.6)		(32.4)
	15 (18.0)	Me ₂ N S Me	(10.2)	NO ₂	(7.7)	Me	
H ₂	~36	Me ₂ N Me	(25.7)	SO ₂ Ph	(11.4)		
		Me ₂ N Me					

^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

pKa's of CH bonds at Nitrile, Heteroaromatic, and Sulfur Substituted Carbon

Substrate	pKa H ₂ 0	D (DMSO)	Substrate	pKa H ₂ 0	O (DMSO)	Substrate	pKa H₂O	(DMSO)	Substrate	pKa H	O (DMSO)
	NITRILES			ULFIDES		SULFOXIDES SULFONES				<u> </u>	
X= H CH ₃ Ph COPh CONR ₂ CO ₂ Et CN OPh N+Me ₃ SPh SO ₂ Ph	11	(31.3) (32.5) (21.9) (10.2) (17.1) (13.1) (11.1) (28.1) (20.6) (20.8) (12.0)	PhSCH ₂ X X= Ph CN COCI COPI NO ₂ SPh SO ₂ F SO ₂ C POPI MeSCH ₂ SC PhSCHPh ₂ (PhS) ₃ CH (PrS) ₃ CH	n Ph CF ₃ P ₂ Ph	(30.8) (20.8) (18.7) (16.9) (11.8) (30.8) (20.5) (11.0) (24.9) (23.4) (26.7) (22.8) (31.3)	O	LFONIUM	(35.1) (29.0) (29.0) (33) (27.2) (18.2) (24.5)	Ph CH=CH CH=CH CCPh COPh COMe OPh N*Me ₃ CN NO ₂		(29.0) (31.0) (31.2) (23.4) (22.5) (20.2) (22.1) (11.4) (12.5) (27.9) (19.4) (12.0) (7.1) (23.5)
HETER	O-AROMAT	TICS	ş 1 Me			Me I St		(16.3)	SMe SPh		(20.5)
Ph		(28.2)	SH SCHP	h	(23.0)	SULFIMIDES NTs	S & SULFOX	IMINES	SO ₂ Ph PPh ₂ O O Ph S CHPh ₂		(12.2) (20.2) (22.3)
N Ph		(30.1)	x			Ph/S'R		(27.6)			(31.1)
Ph		(26.7)	X= Ph CO ₂ N CN	Лe	(30.7) (20.8) (19.1)	R= Me i-Pr O NTs Ph		(30.7)	Me Me		(18.8)
Ph Ph		(25.2)	RSCH₂CN R= Me Et		(24.3) (24.0)	O NMe Ph S Me		(33)	CF ₃ S i-Pr		(21.8)
Ph		(30.2)	<i>i-</i> Pr <i>t</i> -Bu		(23.6) (22.9)	O N⁺Me₂ Ph S Me O NTs		(14.4)			(26.6) (32.8)
Ph		(30.0)	PhSCH=CH BuSH PhSH		(26.3) -11 (17.0) (10.3)	Ph S CH ₂ Cl		(20.7)	Et Et (PhSO ₂) ₂ CH	l ₂ Me	(14.3)

^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

pKa's of CH bonds at Heteroatom Substituted Carbon & References

Substrate pKa	H ₂ O (DMSO)	Substrate pK	a H ₂ O (DMSO)	Substrate pKa	H ₂ O	(DMSO)	REFERENCES
ETHERS		PHOSPHONIUM		NITRO			DMSO:
CH ₃ OPh MeOCH ₂ SO ₂ Ph PhOCH ₂ SO ₂ Ph PhOCH ₂ CN MeO Ph	(49) (30.7) (27.9) (28.1) (22.85)	P+H ₄ MeP+H ₃ Et ₃ P+H Ph ₃ P+CH ₃ Ph ₃ P+ <i>i</i> -Pr Ph ₃ P+CH ₂ COPt Ph ₃ P+CH ₂ CN	-14 2.7 9.1 (22.4) (21.2) n (6.2) (7.0)	RNO ₂ R= CH ₃ CH ₂ Me CHMe ₂ CH ₂ Ph CH ₂ Bn CH ₂ SPh CH ₂ SO ₂ Ph	≈10	(17.2) (16.7) (16.9) (12.2) (16.2) (11.8) (7.1)	JACS <u>97</u> , 7007 (1975) JACS <u>97</u> , 7160 (1975) JACS <u>97</u> , 442 (1975) JACS <u>105</u> , 6188 (1983) JOC <u>41</u> , 1883 (1976) JOC <u>41</u> , 1885 (1976) JOC <u>41</u> , 2786 (1976) JOC <u>41</u> , 2508 (1976) JOC <u>42</u> , 1817 (1977) JOC <u>42</u> , 321 (1977)
SELENIC	SELENIDES		PHOSPONATES & PHOSPHINE OXIDES			(7.7)	JOC <u>42,</u> 326 (1977) JOC <u>43,</u> 3113 (1978) JOC <u>43,</u> 3095 (1978)
PhSe Ph	(18.6)	O II (EtO) ₂ P X		O ₂ N			JOC <u>43</u> , 1764 (1978) JOC <u>45</u> , 3325 (1980) JOC <u>45</u> , 3305 (1980)
PhSeCHPh ₂	(27.5)	X= Ph	(27.6)	n= 3		(26.9)	JOC <u>45</u> , 3884 (1980) JOC <u>46</u> , 4327 (1981)
(PhSe) ₂ CH ₂	(31.3)	CN CO₂Et	(16.4) (18.6)	4		(17.8)	JOC <u>46</u> , 632 (1981) JOC <u>47</u> , 3224 (1982)
PhSeCH ₂ Ph	(31.0)	CI	(26.2)	5 6		(16.0) (17.9)	JOC <u>47</u> , 2504 (1982) Acc. Chem. Res. <u>21</u> , 456 (1988)
PhSeCH=CHCH ₂ Se	ePh (27.2)	SiMe ₃	(28.8)	7		(15.8)	Unpublished results of F. Bordwell
AMMONIUM		Ph ₂ P X X= SPh	(24.9)	IMINES N Ph			Water: Advanced Org. Chem., 3rd Ed.
Me ₃ N+CH ₂ X	(20.6)	CN	(16.9)			(24.3)	J. March (1985) Unpublished results of W. P. Jencks
X= CN SO ₂ Ph COPh CO ₂ Et	(19.4) (14.6) (20.0)	Ph ₂ PCH ₂ PPh ₂	(29.9)	Ph Ph Oxime ethers are ~ acidic than their keto Streitwieser, JOC 19	one cou	nterparts	THF: JACS <u>110</u> , 5705 (1988) See cited website below for additional data
CONEt ₂	(24.9)	Ph ₂ PCH ₂ SO ₂ Ph	n (20.2) ;				ı

^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

DMSO Acidities of Common Heterocycles

Bordwell, ACR, **1988**, *21*, 456 Bordwell http://www.chem.wisc.edu/areas/reich/pkatable/index.htm

	N N		N N H	N. N	N _N	
23.0	19.8	18.6	16.4	13.9	11.9	18.0
$\bigcap_{N \to 0}$	√NHO NHO NHO				CN O	
24.0	20.8	15.	0	12.1	26.4	24.0
NH S	ON THE REPORT OF THE PERSON OF	SH SH	S N	Me SHH	Me N N+ Me	—H Ме N+
13.3	14.8	11.8	29.4	16.5	18.4	24